• Login
    View Item 
    •   Research Bank Home
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    •   Research Bank Home
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vein pattern visualization through multiple mapping models and local parameter estimation for forensic investigation

    Sharifzadeh, Hamid Reza; Zhang, Hengyi; Kong, Adams Wai-Kin

    Thumbnail
    Share
    View fulltext online
    ICPR14_1025_FINAL Uploaded.pdf (647.9Kb)
    Date
    2014
    Citation:
    Sharifzadeh, H. R., Zhang, H., and Kong, A. (2014). Vein Pattern Visualization Through Multiple Mapping Models and Local Parameter Estimation for Forensic Investigation. 22nd International Conference on Pattern Recognition (ICPR), 24-28 August.(Ed.), doi: 10.1109/ICPR.2014.37 (p. 160-165).
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/2972
    Abstract
    Forensic investigation methods based on some human traits, including fingerprint, face, and palmprint, have been developed significantly, but some major aspects of particular crimes such as child pornography still lack of notable research efforts. Unlike common forensic identification methods, techniques for identifying criminals in child pornographic images should be developed based on partial non-facial skin observable in the images because criminals always hide their faces. Few methods published recently have shown the potential of vein patterns visualized from color images as a criminal and victim identification tool. However, these methods have two weaknesses: 1) they use single model to visualize vein patterns hidden in color images, which neglects the diversity of skin properties and 2) even though their parameters are determined automatically by an optimization, they do not adapt to fit local image characteristics. To address these weaknesses, this paper proposes an algorithm composed of a bank of mapping models which transform color images to near infrared (NIR) images for visualizing vein patterns and a local parameter estimation scheme for handling different image characteristics in different regions. Imbalanced data regression is also used to systematically construct the model bank. The proposed algorithm is examined and compared with the previous methods on a database of 920 thigh images from 230 subjects. It outperforms the previous methods.
    Keywords:
    vein patterns, skin marks, forensics, biometrics, child pornography, victim identification, criminal identification
    ANZSRC Field of Research:
    080109 Pattern Recognition and Data Mining
    Copyright Holder:
    ICPR
    Available Online at:
    http://iapr.papercept.net/conferences/conferences/ICPR14/program/ICPR14_ContentListWeb_1.html
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Conference Papers [147]

    Library home
    Send Feedback
    Research publications
    Unitec
    Moodle
    © Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142
     

     

    Usage

    Downloads, last 12 months
    89
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankResearch at UnitecContact us

    Help for authors  

    How to add researchOpen Access GuideVersions Toolkit

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereAcademic study areasAuthorDateSubjectTitleType of researchSupervisorThis CollectionAuthorDateSubjectTitleType of researchSupervisor

    Library home
    Send Feedback
    Research publications
    Unitec
    Moodle
    © Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142