• Login
    View Item 
    •   Research Bank Home
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    •   Research Bank Home
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of the raingauge distribution on stormwater models

    Cooper, M.R.; Fernando, Achela

    Thumbnail
    Share
    View fulltext online
    fernando - raingauge distribution.pdf (459.3Kb)
    Date
    2009-07
    Citation:
    Cooper, M., & Fernando, A., (2009). The effect of the raingauge distribution on stormwater models. In In R.S. Anderssen, R.D. Braddock, & L.T.H. Newham (Eds.). 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. (pp. 3500-3506.) Available from http://www.mssanz.org.au/modsim09/I8/cooper.pdf
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/1891
    Abstract
    It is well known that the accurate representation of spatial variation of rainfall within a catchment is important in achieving reliable outcomes from stormwater models. Various guidelines recommend different densities of raingauge distribution to sufficiently capture and represent the rainfall variation within catchments. The cost of installing a rain-gauge may be insignificant compared to the benefit to be gained from more accurate modelling outcomes. To observe and quantify the effect of raingauge distribution and to understand the limitations of guidelines, a modelling study was undertaken. The study involved collection of data from a network of raingauges and a flow gauge in a small stormwater catchment, development and calibration of a stormwater model for the catchment, and the evaluation of the sensitivity of the model to spatially distribution of rainfall data. Three methods of rainfall data assimilation were tested with varying raingauge densities. The outcome of this modelling study confirms that the difference between the actual and the model-simulated peak flow from the catchment increased with decreasing raingauge density. The paper summarises the quantitative results obtained in this modelling study and concludes that the most robust stormwater model will be that calibrated using rainfall data gathered from within the catchment being modelled. Using a dense network of raingauges and assigning rainfall data from the nearest gauge, rather than station averaged and/or Thiesson polygon weighted sum, from a network of gauges emerges as the best approach for accurately estimating runoff peak from this small urban catchment. It is proposed that much greater emphasis should be placed on gathering adequate rainfall data to achieve specific modelling objectives given that the installation and operation of a raingauge is relatively inexpensive.
    Keywords:
    Rainfall-runoff models, MOUSE®, Raingauge density
    ANZSRC Field of Research:
    090509 Water Resources Engineering
    Copyright Holder:
    The Modelling and Simulation Society of Australia and New Zealand Inc. and the International Association for Mathematics and Computers in Simulation
    Copyright Notice:
    Copyright © 2009 The Modelling and Simulation Society of Australia and New Zealand Inc. and the International Association for Mathematics and Computers in Simulation. All rights reserved.
    Available Online at:
    http://www.mssanz.org.au/modsim09/I8/cooper.pdf
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Construction + Engineering Conference Papers [198]

    Library home
    Send Feedback
    Research publications
    Unitec
    Moodle
    © Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142
     

     

    Usage

     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankResearch at UnitecContact us

    Help for authors  

    How to add researchOpen Access GuideVersions Toolkit

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereAcademic study areasAuthorDateSubjectTitleType of researchSupervisorThis CollectionAuthorDateSubjectTitleType of researchSupervisor

    Library home
    Send Feedback
    Research publications
    Unitec
    Moodle
    © Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142