to and from the site will support these facilities and establish a connection from the harbour and a continuation on one's journey to the rest of the city. Quay Street will be addressed to provide for pedestrians crossing this heavy vehicular dominated arterial route and to give Queens Wharf a sense of place by accenting its historical significance through design.

The Auckland waterfront was historically an industrially dominated zone which discouraged unfettered public access beyond the red fence onto the working wharves. With the sporadic development of a now recreational city unguided by a cohesive urban plan, the waterfront, now partially public space, has remained a disconnected and unengaged element to the city as it is still largely characterised by its former role in shipping. Queens Wharf is located at the base of Auckland city's main pedestrian arterial route; however, due to its undeveloped state, it does not hold a sense of place along this pedestrian corridor which dissipates at the harbour’s edge despite serving Auckland as the place of arrival for cruise ships.

The waterfront was vital for the commercial growth of Auckland city and was the location that connected Auckland to the rest of the world; therefore, its industrial and social significance are monumental components to the heritage of Auckland’s waterfront. This research project attempts to knit Queens Wharf seamlessly to Auckland City by developing an improved transport hub to connect local residents and tourists within the city and to wider Auckland, and by acknowledging its rich history architecturally.

The cruise terminal facility and domestic ferry port will be developed to accommodate the expected demographic growth to provide a memorable journey for passengers. A defined onward transportation area to circulate pedestrians

ABSTRACT

The Auckland waterfront was historically an industrially dominated zone which discouraged unfettered public access beyond the red fence onto the working wharves. With the sporadic development of a now recreational city unguided by a cohesive urban plan, the waterfront, now partially public space, has remained a disconnected and unengaged element to the city as it is still largely characterised by its former role in shipping. Queens Wharf is located at the base of Auckland city’s main pedestrian arterial route; however, due to its undeveloped state, it does not hold a sense of place along this pedestrian corridor which dissipates at the harbour’s edge despite serving Auckland as the place of arrival for cruise ships.

The waterfront was vital for the commercial growth of Auckland city and was the location that connected Auckland to the rest of the world; therefore, its industrial and social significance are monumental components to the heritage of Auckland’s waterfront. This research project attempts to knit Queens Wharf seamlessly to Auckland City by developing an improved transport hub to connect local residents and tourists within the city and to wider Auckland, and by acknowledging its rich history architecturally.

The cruise terminal facility and domestic ferry port will be developed to accommodate the expected demographic growth to provide a memorable journey for passengers. A defined onward transportation area to circulate pedestrians

to and from the site will support these facilities and establish a connection from the harbour and a continuation on one’s journey to the rest of the city. Quay Street will be addressed to provide for pedestrians crossing this heavy vehicular dominated arterial route and to give Queens Wharf a sense of place by accenting its historical significance through design.
ACKNOWLEDGEMENTS

To Mum and Dad: thank you for your continuous support and encouragement throughout my years of study. I am so grateful. To Dawne and George: thank you for your support and advice through my studies.

Thank you to my supervisors, Graeme McConchie and Jeanette Budgett, for your guidance through this research project, and to Jeremy Salmond and Bhaven Raval for your time and knowledge.
1.0 INTRODUCTION

1.1 Background of the Project

Queens Wharf was owned by Ports of Auckland Limited and used as a cargo wharf until 2010. When it was sold to the Auckland Regional Council and the New Zealand Government, it was made available as public space. Due to its central location within Auckland City at the end of the main pedestrian arterial route, it is an ideal public axis from Queen Street onto the wharf, which establishes a connection with the harbour. However, Queens Wharf remains undeveloped, and instead dissipates as Quay Street intersects this corridor. This is because of a number of reasons: firstly, Quay Street is a heavy vehicular-dominated arterial route from East to West and it obstructs a physical connection from Queen Street to Queens Wharf. The second reason relates to the historic development of the city. The Auckland wharves were used for the industrial trades and services of the commercial city. Public access was not permitted beyond the red fence, and the fence represented this division between public space and the industrial area. However, despite the ownership and usage of the wharves now oriented to public recreation space, there is little sense of welcome, unless pedestrians are crossing this boundary for the domestic ferry port or cruise terminal, and there is minimal development to encourage recreation.

There are four structures on Queens Wharf in its present state. Shed 10, a heritage building, was refurbished and restored to service Auckland as the primary cruise terminal. Double the size of the cruise terminal on Princes Wharf, it is capable of processing ships carrying up to 5,000 passengers, sufficient to support most vessels which on average take this number of travellers. However, through site studies it is apparent there are insufficient facilities for onward travel and luggage storage areas. Present, vehicle and pedestrian circulation is underfed and blunted. Neither shelter nor seating is provided for passengers awaiting onward transportation, and the lack of signage creates unregulated movement for pedestrians. Luggage for disembarking passengers is unloaded directly onto the wharf behind steel fencing for security but it is exposed and unsheltered.

The domestic ferry port at the base of Queens Wharf is an active hub for water commuters. It services users entering the city from local ports such as North Shore, Hobsonville and West Harbour as well as exporting tourists and day-trippers to destinations such as Rangitoto Island and Waiheke Island for recreation. The volume of ferries is currently under review due to the growth in commuters. The building itself is insignificant in design and its fit out is minimal. It provides shelter and secured areas for boarding passengers as well as a café space and store rooms for the ferries.

The Cloud is a temporary structure built at the western edge of Queens Wharf; it is an events space designed to house the fans of the Rugby World Cup 2011. It was a response to an unsuccessful urban design competition open to practicing architects, run in 2009 to develop Queens Wharf into a ‘people’s wharf’; however, all submissions were heavily critiqued by the public and eventually the competition was withdrawn. This structure is infrequently used for public events and does not aesthetically benefit the site. See appendix A.

The old Ferry Building is a heritage structure which has been refurbished with restaurants. Its presence on the site is grand and holds great historical significance. It lacks a space for public use because of its proximity to the water’s edge. The wharf is the gateway into Auckland and the first point of contact for travellers. This presents an opportunity to create a memorable journey for tourists and local residents by enhancing the waterfront atmosphere and establishing a sense of place. This acknowledges the threshold from Queens Wharf and merges pedestrian traffic into the city.

1.2 Research Question

How can a waterfront development establish a connection between Queens Wharf and the Auckland City basin?
1.3 Project Outline

Statistics suggest that the cruise tourism industry is growing, with larger vessels being built to harbour more passengers and crew. Passengers arriving at Auckland have increased from 164,977 in 2011-2012 to 249,400 in 2015-2016. The frequency of vessels docking at Auckland City has also increased from 97 in 2011-2012 to 125 in 2015-2016. These increases are a major component to the Auckland economy. During the 2015-2016 period, the Auckland region generated $15.6bn from the cruise tourism sector alone. Given the huge growth over recent years from the cruise industry, larger vessels have recently been built and launched in 2014, which average 4,000 passengers at double occupancy. As these vessels exceed the length of Queens Wharf, the ships are currently unable to berth at Auckland’s primary cruise terminal. Shed 10 does not adequately support the facilities required such as sheltered waiting areas for onward travel and undercover luggage areas. The growing demand of the cruise tourism industry suggests the need to develop this space. See appendix B.

The Auckland city population has risen 8% since 2006 and is expected to reach 2 million by 2031. Due to the traffic congestion caused by this growth, the domestic water commuter demands have risen, requiring more frequent use and space. As this facility’s current capacity to service the commuters is already under attention, the opportunity to redesign a space to accommodate the growth is warranted.

The physical interruption caused by Quay Street between the waterfront and Queen Street is unravelled due to the sporadic development of the city. Development on Queens Wharf suggests the need to master plan this space to strengthen the pedestrian connection. This will encourage a fluid transition to integrate the waterfront with the city in a meaningful way.

1.4 Aims and Objectives of the Project

The aim of this project is to enhance the experience of a cruise tourist disembarking from a vessel, by providing a memorable experience through architecture. Development of an existing cruise terminal supported by an urban master plan will establish a cohesive pedestrian transition from the waterfront to the city. The terminal and supporting architectural development on site supports Auckland City’s context and reflects its historical identity.

This project aims to encourage pedestrian occupation with an experience that enhances the waterfront atmosphere.

1.5 Scope and Limitations

The scope of this project is limited to Queens Wharf and the Quay Street intersection along the north to south axis defined by Queen Street. This area of investigation focuses its study on the connection that can be established from Queen Street to this waterfront location. Suggestive design propositions establish a connection from east to west along Quay Street to develop a connection from the site to its context. Due to the scale of the site, Queens Wharf will be resolved with a master plan and one building is addressed in more detail through developed design.
2.0 HISTORICAL CONTEXT

New Zealand is a country surrounded by water and isolated from the rest of the world. It was reliant on shipments to import and export goods, which encouraged people to settle here. Due to its linear form, the water's edge is easily accessible from any part of the country; however, Auckland city became the hub of trading settlements in the Bay of Islands and Otago Harbour, decided...
Alexander Wiseman to design the Ferry Building. This was intended to provide office administration and access to the ferry wharves. This ferry system was the most efficient connection to the North Shore prior to the Harbour Bridge construction.19 The original proposal for the Ferry building was a 5-storey building; however, Aucklanders complained its height would ruin the view down Queen Street. Eventually, it was agreed to be a 4-storey brick and sandstone structure with a tower. The Ferry Building was opened in 1912.20

As development continued on the waterfront wharves in 1910, two of the five sheds on Queens Wharf were constructed; however, they were not used by the Auckland Harbour Board. Instead, they served an alternative use in winter by accommodating the Agricultural and Pastoral show for great crowds of people and large scale display of exhibits. In 1911, the 200 voice Sheffield Choir performed in Shed F as part of the Musical Festival of the British Empire held in Auckland. During that year, however, the sheds began being used for their purpose. As large ships began berthing at the wharf, the sheds were being equipped as waterside workers’ spaces. The sheds were fitted out with electric lifts, and offices for the traffic manager and customs department.21 They were of utilitarian design with an efficient use of material, function and space.

In 1912, ornamented gates and fences were progressively installed on the Queen Street Wharf, and eventually further along the waterfront parallel to Quay Street.22 This fence was erected

W.H Hamer, Auckland Harbour Board’s engineer proposed further land reclamation and a series of concrete finger wharves which extended into the Waitemata Harbour protected by tide deflectors. Kings Wharf, one of Auckland’s waterfront wharves, was the first ferro-concrete wharf to be built in Auckland.14 This method of construction was used as an experiment to test its strength in support the weight of transported cargo into the harbour. The structure evidently was approved, and the subsequent waterfront wharves were similarly constructed. His new plan included a new wharf at the foot of Queen Street to replace the original timber dock.15 Queens Wharf rests at the foot of Queen Street, Auckland’s major arterial route. Due to its prominent location, it developed social significance for its role in ceremonial events including the departure of troops for the First World War, as well as visits from the British Royals.16 With the construction of these new docks, the ocean bed was deepened to allow larger steamers to berth.

Quay Street was formed during the land reclamation process and was heavily used by the trading companies to service their business to and from the wharves. The trading companies built offices and warehouses lining Quay Street as a direct result of the prosperity and shipping trade for offices, warehouses and storage space. These buildings were all built from 1898 to 1907. They were of similar scale, construction and architectural detailing and thus formed a coherent group.18 Shortly after this time, the Auckland Harbour Board commissioned architect

24 Auckland City Council, “Auckland Heritage Walks; Downtown, Midtown, Uptown,” accessed March 10, 2015
26 Waterfront Auckland, “Queens Wharf History,” accessed March 10, 2015
In 1980, the Auckland Star published an image of the Quayside plans, revealing a new design to house the offices of the Auckland Harbour Board at the base of Princes Wharf. The building was elevated on large columns to retain a pedestrian precinct across the waterfront. However, the public space was forfeited when developers decided to infill the space below the Auckland Harbour Board building for commercial outlets and obstructed what used to be efficient public circulation space. As the AHB now had new offices, the ferry building was then refurbished, to be occupied by restaurants.

In 2009 a design competition was announced for a renewing of Queens Wharf into a public fan zone for the 2011 Rugby World Cup event. The preliminary submissions required design qualities which focused on: public access, harbour view protection, attention to scale and space, multiple activities and delivering authentic visitor experiences.

A shortlist of five finalists was chosen from the 237 entries received. The panel made these designs available to the public; however, the designs received strong criticism, including Auckland’s councillor Mike Lee who described them as “lacklustre, underwhelming and mediocre.” The competition took a back foot and a winner was never announced.

During the mid to late 1900s there was a minimal number of structures built on the waterfront: mainly the Kings and Queens Wharf sheds were structurally improved and the wharves themselves were repaired after deterioration. During 1935 a more recreation-purposed structure was put forward for consideration to extend Queens Wharf. This was intended to improve accommodation and facilities for passengers of the steamers; however, this did not eventuate further than a proposed concept. Rather, verandas on the sheds and such things were added to the worker’s environment to accommodate for the comfort of the regular residents.

Through the second half of the 20th century, Auckland’s waterfront continued to develop as the industrial hub of New Zealand. In 1961 the overseas passenger terminal on Princes Wharf was opened, diverting all passenger traffic away from Queens Wharf. The import and export capacities of Auckland’s waterfront were increased with the building of Blackbird, Felicia and Ferguson wharves for shipping and container cargo. The Tank Farm site to the west of the waterfront supplied cement that built up the fabric of Auckland city, and the Viaduct Basin was used by the fishing and shipping industries for their commercial businesses.

In 1980, the Auckland Star published an image of the Quayside plans, revealing a new design to house the offices of the Auckland Harbour Board at the base of Princes Wharf. The building was elevated on large columns to retain a pedestrian precinct across the waterfront. However, the public space was forfeited when developers decided to infill the space below the Auckland Harbour Board building for commercial outlets and obstructed what used to be efficient public circulation space. As the AHB now had new offices, the ferry building was then refurbished, to be occupied by restaurants.

In 2009 a design competition was announced for a renewing of Queens Wharf into a public fan zone for the 2011 Rugby World Cup event. The preliminary submissions required design qualities which focused on: public access, harbour view protection, attention to scale and space, multiple activities and delivering authentic visitor experiences.

A shortlist of five finalists was chosen from the 237 entries received. The panel made these designs available to the public; however, the designs received strong criticism, including Auckland’s councillor Mike Lee who described them as “lacklustre, underwhelming and mediocre.” The competition took a back foot and a winner was never announced.

During the mid to late 1900s there was a minimal number of structures built on the waterfront: mainly the Kings and Queens Wharf sheds were structurally improved and the wharves themselves were repaired after deterioration. During 1935 a more recreation-purposed structure was put forward for consideration to extend Queens Wharf. This was intended to improve accommodation and facilities for passengers of the steamers; however, this did not eventuate further than a proposed concept. Rather, verandas on the sheds and such things were added to the worker’s environment to accommodate for the comfort of the regular residents.

Through the second half of the 20th century, Auckland’s waterfront continued to develop as the industrial hub of New Zealand. In 1961 the overseas passenger terminal on Princes Wharf was opened, diverting all passenger traffic away from Queens Wharf. The import and export capacities of Auckland’s waterfront were increased with the building of Blackbird, Felicia and Ferguson wharves for shipping and container cargo. The Tank Farm site to the west of the waterfront supplied cement that built up the fabric of Auckland city, and the Viaduct Basin was used by the fishing and shipping industries for their commercial businesses.

In 1980, the Auckland Star published an image of the Quayside plans, revealing a new design to house the offices of the Auckland Harbour Board at the base of Princes Wharf. The building was elevated on large columns to retain a pedestrian precinct across the waterfront. However, the public space was forfeited when developers decided to infill the space below the Auckland Harbour Board building for commercial outlets and obstructed what used to be efficient public circulation space. As the AHB now had new offices, the ferry building was then refurbished, to be occupied by restaurants.

In 2009 a design competition was announced for a renewing of Queens Wharf into a public fan zone for the 2011 Rugby World Cup event. The preliminary submissions required design qualities which focused on: public access, harbour view protection, attention to scale and space, multiple activities and delivering authentic visitor experiences. A shortlist of five finalists was chosen from the 237 entries received. The panel made these designs available to the public; however, the designs received strong criticism, including Auckland’s councillor Mike Lee who described them as “lacklustre, underwhelming and mediocre.” The competition took a back foot and a winner was never announced.

During the mid to late 1900s there was a minimal number of structures built on the waterfront: mainly the Kings and Queens Wharf sheds were structurally improved and the wharves themselves were repaired after deterioration. During 1935 a more recreation-purposed structure was put forward for consideration to extend Queens Wharf. This was intended to improve accommodation and facilities for passengers of the steamers; however, this did not eventuate further than a proposed concept. Rather, verandas on the sheds and such things were added to the worker’s environment to accommodate for the comfort of the regular residents.

Through the second half of the 20th century, Auckland’s waterfront continued to develop as the industrial hub of New Zealand. In 1961 the overseas passenger terminal on Princes Wharf was opened, diverting all passenger traffic away from Queens Wharf. The import and export capacities of Auckland’s waterfront were increased with the building of Blackbird, Felicia and Ferguson wharves for shipping and container cargo. The Tank Farm site to the west of the waterfront supplied cement that built up the fabric of Auckland city, and the Viaduct Basin was used by the fishing and shipping industries for their commercial businesses.

In 1980, the Auckland Star published an image of the Quayside plans, revealing a new design to house the offices of the Auckland Harbour Board at the base of Princes Wharf. The building was elevated on large columns to retain a pedestrian precinct across the waterfront. However, the public space was forfeited when developers decided to infill the space below the Auckland Harbour Board building for commercial outlets and obstructed what used to be efficient public circulation space. As the AHB now had new offices, the ferry building was then refurbished, to be occupied by restaurants.

In 2009 a design competition was announced for a renewing of Queens Wharf into a public fan zone for the 2011 Rugby World Cup event. The preliminary submissions required design qualities which focused on: public access, harbour view protection, attention to scale and space, multiple activities and delivering authentic visitor experiences. A shortlist of five finalists was chosen from the 237 entries received. The panel made these designs available to the public; however, the designs received strong criticism, including Auckland’s councillor Mike Lee who described them as “lacklustre, underwhelming and mediocre.” The competition took a back foot and a winner was never announced.
After the failure of the design competition and the upcoming Rugby World Cup approached, a temporary multifunction building was created, known as The Cloud, at a cost of $10 million, and it remains onsite today for public events.

In 2013 Jasmax Architects were commissioned to redevelop Shed 10 on Queens Wharf into a dual purpose space. It was to be the main cruise ship terminal facility for Auckland, making the Princes Wharf terminal the secondary terminal. During the off-peak cruise season, the space would be transformed into event space. This shed operates as the main terminal capable of processing up to 3,000 people. It is also used for public events such as seminars, exhibition space, concert hall space and fashion shows.

Figure 8. The Cloud and Shed 10, Queens Wharf Architect: Jasmax, 2011
3.0 STATE OF KNOWLEDGE IN THE FIELD

The exploratory documentary draws on the spatial arrangements, urban landscape and design narratives of chosen case studies which respond to similar topics and associated theories relatable to this design. Their successes and shortfalls are identified in order to develop an understanding for urban planning and public architecture, and to evaluate and develop the design for Queens Wharf.

These case studies and formal elements are based in Auckland and internationally. Themes investigated include discussions based on: cruise terminal design, axis, public space in cityscape and internationally. The design of a facility such as a terminal is a unique process given the nature of the building. The filtration of boundaries and security associated requirements is Yokohama International Port Terminal, offering public occupation whilst performing as a cruise terminal.

In some aspects, this terminal usually isolated from its context and instead embraces the movements towards developing a more pedestrian-friendly city by improving the sense of place and circulation routes. The industrial-dominated precinct has been repurposed to accommodate small scale restaurants, markets, outdoor cinema and public parks, all of which retain the waterfront character of a working wharf. The early success of this precinct demonstrates a nature which can be translated to the rest of the waterfront, however, plans to further develop this site suggests these public amenities are not permanent.

Axis

Linearity is a dominant driven in the development of this project as the axis at this site is disrupted and disturbed, hindering the seamless transition North to South between the waterfront and the city basin as well as a weak connection from East to West. Wynyard Quarter to Mission Bay. Accoutrement axis has been successfully improved in a number of architectural precedents. Two notable mentions are, Cheonggyecheon, Seoul, South Korea, and The High Line, New York, USA. Cheonggyecheon was a 2 tiered main arterial highway through the city of Seoul. To rejuvenate the city with nature, the highway was excavated and a natural stream and public axis were developed in its place with a series of bridges to circulate pedestrians. Now it is an active node which motivates a sense of place for pedestrians; this means the liberation of the precinct.13

The High Line in New York has repurposed a dormant, elevated railway which weaved above the city around the buildings. With architectural and landscape intervention, it is now a public skywalk for pedestrians.32 Critiquing these urban planning developments in a cityscape which can be applied to the site development of Queens Wharf.

Princes Wharf Development

A case study into the development on Princes Wharf explores an interesting timeline of how an intended public wharf instead progressed into a semi-private zone. It uncover's how public involvement and their desires have impact on public space, and how developers consequently impacted on Auckland's waterfront vision. This case study suggests how an intervention on Queen's Wharf might address Princes Wharf's shortcomings.

Public Space

Wynyard Quarter is an early response to Auckland City Council's movement towards developing a more pedestrian-friendly city by improving the sense of place and circulation routes. The industrial-dominated precinct has been repurposed to accommodate small scale restaurants, markets, outdoor cinema and public parks, all of which retain the waterfront character of a working wharf. The early success of this precinct demonstrates a nature which can be translated to the rest of the waterfront, however, plans to further develop this site suggests these public amenities are not permanent.

Cruise Terminal Design

The design of a facility such as a terminal is a unique process given the nature of the building. The filtration of boundaries and security is particular to the function of this type of building; however, given the seasonal demand for building occupation of a cruise facility, it must offer dual usage during the seasonal fluctuations. A notable precedent study which successfully deals with these associated requirements is Yokohama International Port Terminal, Yokohama, Japan which resists the predictable language of a terminal usually isolated from its context and instead embraces it.27 The design of this building was discussed with senior architect, Braven Falis who was involved in the design of this terminal, to understand the design process and considerations. The building's success has been extensively documented online. The design retains open space as an undulating landscape, offering public occupation whilst performing as a cruise terminal. Understanding how this project successfully merges public space with secured terminal space will be design knowledge which can be applied to the site development of Queens Wharf.

Current Topical Waterfront Discussions

The topical debates surrounding this location, such as further waterfront land reclamation involving Ports of Auckland, Limited, are influential on the development of this project.
Design

The design process consists of conceptual sketches, models, digital workings and orthographic drawings in order to explore ideas captured from the literature review process, and applying these ideas to the project. A series of explorations and evaluations progressed the project into the developed design phase to work these ideas into greater detail to meet the desired architectural solution to meet the brief outlined. It will acknowledge the important ideas and influences of this site and create a memorable experience for its users. The design will be continually evaluated by discussions with parties both within the Unitec forum as well as practicing architects, particularly, Bhaven Raval of Hassell Architects, Melbourne, Australia via Skype who was involved in the design of Yokohama International Port Terminal of Japan, and Jeremy Salmond of Salmond Reed Architects, Devonport, New Zealand due to his direct involvement with the restoration of Shed 10, Queens Wharf and his specialty as a heritage consultant.

4.0 METHODOLOGY

The body of research used to support the proposal for this project is developed by evaluating 3 components: understanding the site, analysis of literature reviews and the design component of the project.

Literature Reviews

Research, analysis and evaluation of case studies and formal elements are reviewed and evaluated for their success and failures to inform decisions through the design process. Understanding local precedents as well as international projects will support an in depth understanding of public, environmental and economic response to urban developments.

Understanding the Site

Analysis of the site and its context relating to scale, condition, heritage, climatic exposure, architectural vernacular and programmatic activities will communicate the elements of an architectural response necessary to establish the connection lost between the city and the waterfront.

Figure 9. Sketch of city down Queen Street axis

Design
5.0 LITERATURE REVIEW

5.1 Formal Element: Axis

Axis is a design driver often used to define the orientation of a structure. It can serve as a spine of an architectural development with a series of activated nodes to strengthen a circulation route or help to construe the placement of other design elements. This idea can be evaluated in urban planning schemes such as Cheonggyecheon in Seoul, South Korea, and The High Line, New York, USA.

5.1.1 Cheonggyecheon, Seoul, South Korea

Cheonggyecheon is an area in the city of Seoul. In the 1970s, the Cheonggyecheon River was infilled and infrastructure was developed over a two-tiered raised 5 lane highway which served as a main arterial route through the city for vehicular traffic. At the time, this was considered a symbol of progress; however, by the year 2000, the area became the most congested and noise-polluted part of Seoul. The vehicle emissions also heavily decayed the quality of air. With the election of a new president in December 2007, the promise of Cheonggyecheon's river being reinstated was realised and with the support of an overwhelming majority of Seoul residents, the plan to demolish the highway was implemented.

After the freeway was removed, the 10.9km long stream was restored in its place. With the involvement of planners and designers, the reintroduction of nature into the city reinstated many economic, social and environmental benefits to the city which are explored between the three areas of the development: the urban area, urban-natural and natural landscaping. The urban area is often used for festivals, the urban-natural area is a transition area and natural landscaping is where plantations and animals live – it encourages interaction between nature and people.

The river promotes pedestrian occupation, and encourages walking and cycling. The urban plan reduced the number of private parking spaces to discourage residents from using this mode of transport. Instead, public transport systems such as the Bus Rapid Transit are used to circulate pedestrians, reflecting positively on the carbon footprint.

The environment has benefited from this development as the restoration of this green belt through the city has reduced air pollution and noise pollution by 35%. The air temperature has been lowered and moderated with the open space now provided by the stream as the traffic has been diverted elsewhere.

The social aspect for residents in Seoul has been improved with the implementation of public space and green space that can be used to socialise amongst other users. They are given a sense of place with eco-friendly urban design. The historic bridges restored with the development allows circulation between both sides of the river.

The economic impact of this design has resulted in an increase in local business within 1.2km of the Cheonggyecheon corridor and the price of property has increased by 30-50% within 50m of the river.

This axis which once served as a main arterial route through the city of Seoul has successfully shown how a city is capable of functioning without relying on vehicles. By enhancing pedestrian experience, the city atmosphere positively responds environmentally, socially and economically as developments oriented along the spine of this axis become a valuable corridor with active nodes. The compromise of an enhanced urban planning scheme such as this has raised the value of property which can be unaffordable for property buyers. When evaluating this issue against the current property problems of Auckland CBD, where building prices are already financially unaffordable for a large portion of residents, redevelopment such as this may only worsen the situation.

5.1.2 The High Line, New York, America

When the elevated freight rail link discontinued its service of transporting vehicles to factories in the Manhattan area in the 1980s, public officials wanted it gone. In 1999 lawsuits for demolition of the raised train rail link was challenged in court. People advocated for its preservation and reuse as public open space. After a competition was held for its redesign, 2004 James Corner Field Operations, a landscape architecture firm, Diller Scofidio and Renfro, and Piet Oudolf, planting designer, were commissioned as the design team. The elevated promenade was developed in sections with botanical gardens and town squares with numerous access points for pedestrians. The elevated development provides intermittent vantage points along this axis as it weaves between the cityscape, uninterrupted by streets and vehicles. “We envisioned it as one long, meandering ribbon but with special episodes” as described by landscape architect James Corner.

With the success of this repurposed rail link, the project spurred real estate development in the neighbourhoods along the line, similar to the economic response from the development of the Cheonggyecheon River. This project demonstrates how an elevated skywalk in an industrial area can successfully circulate pedestrians through a public space and retain a connection to the streetscape. The promenade must enhance the pedestrian experience to encourage them to use this circulation route. This idea can be used to analyze how this design decision could perform in addressing the Quay Street intersection with the spine of the Queen Street axis as it bleeds onto Queens Wharf. Similarly, Cheonggyecheon River is an urban development which occurs below the ground plane of the cityscape. The design must provide pedestrians to perform their occupation.

goldberger-text
5.2 Case Studies

5.2.1 Princes Wharf

Auckland City councillors and planners have long since been aware of the ideals required for a successful waterfront. The predominant principal is public access and activity. The Auckland Harbour Board conducted a design competition for a development on Princes Wharf in the mid 1980s. Design requirements included a commercially viable concept to attract capital and public activities (to be seen as an essential feature). Of the 15 entries received in October 1986, the 4 short-listed proposals were revealed to the public, which were well-received. However, in stage 2 of the competition, the Auckland Harbour Board asked for refined design development to the stage where they would be prepared to enter a binding agreement/lease agreement with the Board for 20 years. Consequently, the grand designs were cut down and minimised to reflect budget. Despite records of minutes of Auckland Harbour Board meetings stating their despondency, Mace Development was chosen for their economically feasible design. An article in the Auckland Star newspaper published 10 October 1987 explained this development. It included:

▫ 225 bed hotel
▫ Maritime museum and commercial marina
▫ Public steps to form a grandstand to the harbour
▫ Entertainment and cultural centre
▫ Modernised arrival area for cruise ships
▫ Quayside marketplace, food hall and restaurants
▫ Art gallery and cinema
▫ Carpark

The structure would stand 62m high, which instigated an uproar from St Marys Bay residents who fought against the design as it would compromise their harbour views. An agreement was made out of court to restrict the height to 37m. Modification of the design meant the 650 seat theatre and internal public access were relinquished to retain the same size hotel. This design decision favoured the commercial outlet and compromised the public facility.

In the early 1980s came the economic crash. The Mace deal never eventuated and Princes Wharf remained undeveloped for 10 years. However, unbeknownst to the public, the foundations for what we see today on Princes Wharf had already been formulated by the historic decisions which were to favour the commercial sector.

In 1997, after the Ports of Auckland Limited issued a media release notifying the sale of their leasehold interests in the Wharf, the Auckland Regional Council received an application to construct and alter existing buildings on Princes Wharf. The Auckland Regional Council report stated, "The applicant has designed the proposal to comply with all requirements of the Regional Plan Coastal...falls for consideration as a controlled activity...The manager...determined that the application be processed on a non-notified basis." The public was not notified of the proposed development, which no longer had a cinema, theatre, museum, Waitemata steps, festival shopping or arcades. All the public amenities were removed from the design. Over the following years, the developer also modified the original consent. More apartments, hotel rooms, increased building height, pedestrian bridge and new lift shafts were added. These design decisions weakened the atmosphere of the site as the tall buildings did not acknowledge pedestrian scale. The developer applied to restrict ‘unfettered access’ to the end of Princes Wharf and increase the on-site parking.
This is the development we see on Princes Wharf today. The design discourages pedestrian access by the central vehicle path through the middle of the wharf. The apartments, hotels and high-end dining give little reason for one to use this wharf otherwise. The architecture has been designed as a literal interpretation of a cruise liner. The buildings repeat its context; however, the structure is comfortably scaled with a cruise liner berthed at the terminal on the eastern side of the wharf. On the other hand, the space is uncomfortable to experience: passengers disembarking the ship and entering the city from Princes Wharf will pass through this space which has been developed into a road, not a pavement, making pedestrian circulation awkward.

The 5 finalists of the 1987 design competition received positive public response to the people-focused designs yet this element of our waterfront is still largely unrealised. Without public notification, the public amenities were forfeited to commercial development, meaning that the community lost out on waterfront space which was handed to an upmarket hotel, apartments and high-end restaurant dining for the wealthy. Queens Wharf presents an opportunity to follow through on providing public amenities which Princes Wharf failed to execute.
The architectural character of Wynyard Quarter complements the industrial zone with container fit outs, water buoy sculptures and exposed structure framework of buildings. Silo Park has been reprogrammed to be the site of markets, recreation and, through the summer months, an outdoor cinema for the public whilst retained the historical industrial language of the area.

It is understood a portion of Wynyard Quarter's open public space is temporary and will be later developed for further apartment living and accommodation. With the loss of these successful spaces, this indicates such public amenities can be adopted at Queens Wharf to compensate for the public space given over to built form at Wynyard Quarter. This will provide open space for residents and visitors to dwell with a vista into the harbour which is unobstructed by built form. A pocket park at the end of Queens Wharf has the potential to provide a sense of place at the end of the Queen Street axis to experience the waterfront and establish a lost connection to the water. An integrated tram system on the wharf which links these two precincts cohesively tie these two sites together on the East to West axis.

5.2.2 Wynyard Quarter: Silo Park

Auckland city urban planning has progressed in recent years, namely in Wynyard Quarter and Silo Park. What was once an industrial hub has developed into a bustling public precinct. A pedestrian bridge connecting the eastern Viaduct Harbour and Wynyard Quarter enabled access to new restaurants, bars, public parks and food markets. The precinct has been architecturalised at human scale with retail spilling onto the footpaths and paved streets creating a warm, active atmosphere. Sustainable ideas are strong drivers for this developing precinct such as rain catchments and energy generation from on-site sources. Public transport is a target, so urban design of the streets favour pedestrians, cyclists and trams.

Wynyard Quarter received 1.18 million visitors over 2013/2014 period. The visitor target for 2030 is 4 million, which will further boost the Auckland economy. The success of this precinct will continue with the development of new apartments and hotels. Creating an environment that is targeted for family occupation means it is a safe space for all. The long-term intention is to sustain this precinct as a safe zone. John Oatley, CEO of Waterfront Auckland describes the vision for the future residents of Wynyard Quarter: "We want to do things differently with this next stage of development in Wynyard Quarter – to create a new residential community which has all the benefits of inner-city living but the amenity and convenience of a suburban location, all on a smaller carbon footprint."37

5.2.3 Yokohama International Port Terminal, Japan

The Yokohama International Port Terminal is relevant to this project because the form of the structure was influenced by the circulation routes of passengers and the public, and encourages interaction between the two. This concept’s ambition was to challenge the typical layout of a terminal design because of the nature of secured spaces in which international processing activities occur. It blurs the boundary between the isolation of secured spaces and daily life of the public. The rooftop is an undulating greenspace which is used as a rooftop plaza and outdoor event plaza for the public. The centre of this roof folds down into the covered space of the terminal which contains terminal facilities such as information desk, lobby, cruise deck, retail outlets and amenities. The ground floor plane is a covered car park and onward transport space for passengers and the public.

The irregular form of this building was influenced by the circulation of its intended users. Sections of the building were developed which investigated these routes and boundaries and which were then developed into computerised design software which cohesively tied the sections together to produce the structure of the design. The outcome of this process was a fluid and uninterrupted, multi-directional space which allowed interlocking circulation between passengers and the public to encourage interaction. The surface of the building was also developed to distribute loads through the surfaces themselves, moving them diagonally to the ground; this was adequate for dealing with lateral forces generated by seismic movements that affect Japan.

This circulation system provides continuity between the exterior and interior spaces of the building as well as continuity between the vertical spaces. Achieving a cohesive function between these two parties, normally segregated in a typical terminal design, is a concept which can be influential in the development of the terminal design on Queens Wharf. The precedent explores the ways in which a terminal space can still function without compromising public space, but instead encourages blurring the boundaries between the two activities.

Figure 19. Programmatic Section

Figure 20. Aerial Photograph of Yokohama International Cruise Terminal

Figure 21. Roof Top Plaza of Yokohama International Port Terminal

Architect: Farshid Moussavi Architects, 2002

39 Bhaven Raval, interviewed by Chanel Hendriks, August 15, 2015.
5.2.4 Current Topical Discussions of the Auckland Wharves

Ports of Auckland Limited are still an active industrial trade on the eastern side of the Auckland Waterfront. In recent discussions with the Auckland Council and the public, the POAL notified public officials and sought to reclaim further land from the Waitemata Harbour to support business growth in order to facilitate their trade services. Plans to extend Bledisloe wharf with two 90m extensions into the harbour and infill an area of 3 hectares between the extensions was given resource content. This resulted in a number of protests from the public as they opposed further reclamation, saying the ports company’s focus was meeting its own objectives at the expense of the broader public interests. Following the public campaign against further land reclamation by POAL, the court rejected the council’s approval process and stopped the reclamation.

The discussions around land reclamation of the Waitemata Harbour emphasises that the public have strong opinions on how this space is treated and how preservation of the waterfront is important to the people. Due to the length of cruise vessels being built in recent times which exceed the length of Queens Wharf, the site will need to facilitate these larger ships in a more conservative manner which does not demand further land reclamation. Alternative methods will be explored such as an elevated gantry cantilever or temporary tectonic structure which can be manipulated to extend the wharf as needed.

Figure 22. Ports of Auckland Protest
6.0 DESIGN PROCESS

The design process is divided into phases:

6.1 Site and context analysis of historical elements, axes, programs, circulation and materiality
6.2 Identifying the brief developed from the physical site study
6.3 Master plan iterations on Queens Wharf establishing a connection to the city basin
6.4 Developed design
6.5 Critical appraisal of final design
6.1 Contextual Analysis

Site Analysis

Auckland city is located on the east coast of the North Island. Queens Wharf extends north-east from the city into the Waitemata Harbour of the South Pacific Ocean. Although an isolated entity from the rest of the world, New Zealand is easily accessible by water commuters and as has been done so for many years from its first occupation by settlers who developed Auckland city into a commercial capital.

Due to the site’s north-facing location and flat topography, it has unobstructed views of iconic national figures which define Auckland as distinct from other cities. The site is a vantage point for the Harbour Bridge, Rangitoto Island, Devonport and the Sky Tower. Its waterfront location also gives full exposure to climatic elements.

The wharf is ferro-concrete construction on timber piles which penetrate the seabed. The seabed is 10m below sea level at the wharf, allowing ample clearance for the hulls of berthed vessels on both sides. The dimensions of the wharf are 350m x 86m with the maximum length of a berthed vessel being 290m currently, but only on the eastern side. The wharf is protected by tidal deflectors.
Historical Analysis

Land Reclamation

The Auckland waterfront is reclaimed land which extends back to Fort Street; however, there is minimal acknowledgement of this significant development in Auckland’s history. An opportunity is presented to express this architecturally, which will support the idea of establishing a connection from the waterfront to the city.

Queens Wharf

Queens Wharf itself is a heritage element of Auckland city. Preserved in the wharf are two train rail tracks which historically serviced the industrial trades when this was a working wharf. The footprints of the sheds which once occupied this wharf are still visible by the variations of the ground plane.
Shed 10

Shed 10 has been restored and refurbished to serve Auckland as a multi-functional public space. Particularly through the summer season, Shed 10 is fitted out to serve as the primary cruise terminal for Auckland city. The architectural language of the structure retains its industrial aesthetic with exposed structure visible from the interior. Elevators and stairwells located at both ends of the structure allow users to circulate between the ground and first floor. The structure allows open plan space to facilitate multi-functional use.

6.3 Physical Analysis

Queens Wharf extends from the junction of 2 axes as identified. The analysis of programme, materiality, building scales and circulation of the existing context is evaluated along each axis.

Ferry Building

The ferry building is a protected element of the waterfront which adds to the aesthetic of the space. The orange brick and sandstone building rests closely at the water’s edge providing narrow pedestrian circulation along the northern façade where restaurant space bleeds onto the pavement. The upper level restaurants overlook the waterfront wharves; its elevated vantage point provides aspects into the Waitemata Harbour. At ground level pedestrians are able to penetrate the building through an open arch access route from Quay Street to the water’s edge.

Red Fence

The red fence, which borders the Auckland waterfront and which divides the wharves from the city, runs from Queens Wharf to the Ports of Auckland’s wharves on the western side of the waterfront. The heritage red fence is a monumental piece of the waterfront history. It was installed to define a boundary between the city and the wharves to control access, and still is a deterrent to uncontrolled use. The idea of boundary is an interesting idea at this site which deals with a number of varying boundaries, such as the secured filtering of travelling passengers using the domestic ferry port passing through ticketing areas and cruise passengers processing through security and customs space. For this reason, alternative interventions from removal will be explored to counter its rejection of pedestrian penetration and architecturalise its narrative.

There are a number of existing openings that allow through traffic, notably at the entry point of Queens Wharf. These entry points will be used to connect pedestrians and vehicles to and from the site.
Axis: North to South

Queen Street functions as the pedestrian arterial route of the city. Consequently, major public event spaces, notable buildings and retail line this corridor. The opportunity to develop an urban plan onto Queens Wharf to continue this theme will likely activate the site successfully.

The proximity of Britomart Transport Centre to the site is a design advantage circulate users to and from the city.

Axis: East to West

The functions of the waterfront buildings along the East to West axis are determined by their contextual services to that area. At the western side of the axis past Queens Wharf it is evident built form dissipates as the waterfront ownership changes from public council-owned space to Ports of Auckland territory. This is a notable transition which can be architecturalised to emphasise this interesting boundary.

Figure 31. East to West Axis

Figure 32. North to South Axis
Building Scales

The building scale reduces from central city to the waterfront. Build scales on the wharf do not demand excessive height given their functional purpose, and acknowledge the aspects central city buildings have of the waterfront, therefore the proposal will not obstruct their harbour views. This project will design through modest and well-developed principles.
Materiality
The architectural language of existing elements on the site are suggestive of the industrial history of its previous service. The domestic ferry terminal is a relatively new addition to the site; however, it is not a cohesive architectural language due to its steel truss system and arched roof, when analysed with the site context. The opportunity to redevelop this facility allows for an opportunity to integrate its design into an urban master plan.

Queens Wharf
Queens Wharf can support a vessel with a maximum length of 290m. The scope of the project seeks to dock a ship at a length of 314m. This is the largest vessel which currently requires docking at Princess Wharf due to its length. However, as land reclamation was heavily disputed by the public as a solution for the growing demand of commercial companies, the project explores ways to temporarily extend the length of the wharf to support a berthed vessel without compromising harbour space.

Circulation - Vehicle vs Pedestrian Circulation
Waterfront circulation is dominated by vehicular traffic. Vehicles can access the wharf through the central gates. This results in awkward shared space between vehicles and pedestrians, which makes the site difficult to navigate safely. Organisation of these users is required to improve public space. Providing a destination for public circulation at the end of Queens Wharf is important to the success of the design to draw users through.
Quay Street

As Quay Street creates a physical barrier between the city and the waterfront, the pedestrian and vehicle prioritisation must be reconsidered to allow a more connected and safer zone to allow this to happen, namely reducing the number of lanes allocated to private vehicles. To compensate for this reduction, public transport must be revised to allow the city to connect. Alternative approaches to deal with this crossing explores taking the traffic below ground level, elevating a skywalk for pedestrians above ground and altering the prioritisation of the road. Providing an underground tunnel for vehicle traffic would allow Quay Street to be made into boulevard space; however, this is a dramatic response to dealing with congestion and does not improve the carbon footprint.

A skywalk over Quay Street at a minimum height of 4.25m for vehicular underpass clearance would be a valid solution to connect pedestrians from the wharf to the city basin. A direct route for terminal passengers will provide efficient circulation to the Britomart Transport Centre. The Wynyard Quarter gantry has been used to conceptualise this proposal.

Organising the prioritisation of the road can slow the vehicular movement through this space, creating a safer zone. Implementing public transport systems and discouraging private vehicles to use this route will improve the pedestrian experience. This solution can be proposed in conjunction with the skywalk.
6.2 Brief

Through historical and physical studies of the site and its context, the following design intervention seeks to resolve the issues detailed to improve the waterfront atmosphere and its connection to the city basin. An architectural narrative will be used to memorialise the history of Queens Wharf. The axes identified which intersect at Queens Wharf are strengthened to improve circulation and a connectedness to the site. The programmes and materiality have been determined from analysis of the existing urban fabric to assess the most appropriate resolution of the function of Queens Wharf for its success.

Urban Planning Spaces
- Pocket Park
 - Introduction of landscaped space
 - Enclosure of this space will be defined by fragmented suggestions of the shed which used to occupy this footprint
- Differentiation of ground material treatment to suggest movement and function of space
 - Historic Queens Wharf will be memorialised by a timber promenade inserted into the ground plane of the existing concrete ground
- The intersection of Queen Street and Quay Street will be paved to suggest this is transition space signifying that vehicles should proceed with caution there
- Water inlet through site extending into city
 - Runs down Queen Street to memorialise the historical land reclamation of this area to Fort Street

Built Form
- Domestic Ferry Port
 - Improvement of pedestrian circulation
 - Retail space
 - Materiality cohesiveness with existing elements
- Cruise Terminal
 - Development to service a secondary vessel berthed at western façade
 - Non-invasive wharf extension
 - Waiting area
 - Luggage storage
- Onward Transportation Systems
 - Tram Station connecting Wynyard Quarter to Mission Bay
 - Vehicular collection zone for onward transport
- Public building at entrance to Queens Wharf adjacent to Ferry Building
 - Public space exhibiting Auckland’s development plans
 - Seminar space for topical discussions relating to the architectural and urban development plans of the city
 - Upper level space for Auckland Harbour Board offices
6.3 Master Planning Iterations

Land Reclamation

The Freiburg Bächle are small, linear water channels through the city of Freiburg which run along the edge of the roads. Once used to serve water supplies to help fight fires in the 13th century, these streams are now landmarks for the city.

Using methods adopted from a study of the Freiburg Bächle, land reclamation in this master plan is acknowledged by conceptualising a water inlet from Fort Street to the site. This establishes a visual and physical connection from the city to the wharves. A shallow water inlet is conceptualised to create visual continuity from the site to the wharf.

Quay Street

As Quay Street is contributing to the physical separation between the wharf and Queen Street, the road prioritisation has been reconsidered to slow movement through this space. The total width of the road and footpath is 31m. This space is developed to ratio pedestrian, cyclists and public transport with private vehicle lanes at 50:50. This ratio successfully calms the space, reclaims pedestrian priority for a safer zone, humanising it and enhancing the atmosphere.

A skywalk connecting the site to Britomart Transport Centre provides a secondary direct route above ground. Protection from rain and wind exposure provides all weather access.
Queens Wharf Materiality

The timber Queens Wharf, which once served the waterfront trade, has been overlaid by the current concrete wharf and will be partially reinstated in this concrete wharf to memorialise the historic wharf and suggest passive directional circulation to encourage users to move through the space to the end of the wharf. Locals often fish off the end of Queens Wharf; retaining the raw essence of the wharf’s historical use is an element which enhances the waterfront atmosphere at this vantage point where the wharf meets the harbour.

Red Fence

The historic red fence borders the waterfront wharves from Queens Wharf to the Ports of Auckland wharves to the eastern side of the waterfront. Existing openings in the fence occur in front of Queens Wharf and these are used to circulate pedestrians and onward transportation services.

Pocket Park

Zhongshan Shipyard Park in Southern China was developed with similar motives as this project intends to identify with for the Pocket Park at the north eastern part of Queens Wharf. The Zhongshan Shipyard Park designed by Turenscape in 2001 was a reprogrammed shipyard with objectives to improve the city’s landscape, create recreational opportunities as well as educating the public of its historical and environmental significance. Much of the site’s existing structures were restored and preserved as industrial sculptures. The principal designer, Professor Kongjian Yu wanted to embrace the Asian landscape which respected the historic and cultural identity of the industrial site.49

The intervention on Queens Wharf intends to reproduce partial fragments of the shed structure which once occupied this space. The purpose of this acknowledges the significance of the building once here which serviced the industrial trades for many years before it was demolished. The structure expresses the industrial language of its context and provides a sense of enclosure to this space. The ground treatment is landscaped, and contained within the footprint of the shed shell. This space provides a public place for residents and tourists to dwell with an unobstructed vista of the Waitemata Harbour.

Figure 46. Zhongshan Shipyard Park

49 Sarah Garenta, New Public Spaces (London: Octopus Publishing Group, 2006) 151-153
Domestic Ferry

Due to the proximity of the ferry building, the new domestic ferry port must acknowledge the structure. The design needs to allow for better pedestrian circulation around the wharf and provide visual connection through the building. This suggests glazed walls will be appropriate. Its form contours to the footprint of the wharf to support a second vessel. The architectural intervention explores how the terminal will service this side of the wharf. The architectural language of this building will complement the industrial language of the site and allow visual connection through the building. The vernacular is structurally honest, and encapsulates its maritime heritage. Similarly, the onward transportation facility reflects the heritage of the site’s previous services to Auckland.

Public Building

The public building developed at the base of Queens Wharf solidifies the connection between Queen Street and Queens Wharf without obstructing harbour views. This is established by raising the structure on piles, known as Piloti architecture, as the current Auckland Harbour Board building was intended to be before the ground floor was infilled. The ground plane remains public space to retain visual and physical connection between pedestrians and the wharf. The Foundation Cartier, Paris, France was realised with similar ideals. Designed by Jean Nouvel, this building employs transparency and a sense of openness due to its piloti design which invites people to experience the building from both up close and afar. Elevated on piles, it allows visual and physical connection to a public park on the ground floor with glazed facades creating openness.

Cruise Terminal

The existing cruise terminal sufficiently processes passengers and crew when embarking and disembarking at Queens Wharf. An opportunity is presented at the western edge of the wharf to support a second vessel. The architectural intervention explores how the terminal will service this side of the wharf. The architectural layout is established by understanding pedestrian and passenger circulation routes. These are enhanced by filtering boundaries which control the access these two types of users have to the site and its facilities and integrating the main circulation routes to encourage interaction and exposure. The idea of boundaries has been derived from the symbolism of the red fence and translated architecturally to influence the structure of this site. The programmatic layout is established by understanding pedestrian and passenger circulation routes. These are enhanced by filtering boundaries which control the access these two types of users have to the site and its facilities and integrating the main circulation routes to encourage interaction and exposure. The idea of boundaries has been derived from the symbolism of the red fence and translated architecturally to influence the structure of this site.

The architectural language of this building will complement the industrial language of the site and allow visual connection through the building. The vernacular is structurally honest, and encapsulates its maritime heritage. Similarly, the onward transportation facility reflects the heritage of the site’s previous services to Auckland.

Public Building

The public building developed at the base of Queens Wharf solidifies the connection between Queen Street and Queens Wharf without obstructing harbour views. This is established by raising the structure on piles, known as Piloti architecture, as the current Auckland Harbour Board building was intended to be before the ground floor was infilled. The ground plane remains public space to retain visual and physical connection between pedestrians and the wharf. The Foundation Cartier, Paris, France was realised with similar ideals. Designed by Jean Nouvel, this building employs transparency and a sense of openness due to its piloti design which invites people to experience the building from both up close and afar. Elevated on piles, it allows visual and physical connection to a public park on the ground floor with glazed facades creating openness.
6.3.1 Master Plan Iteration 1

The first conceptual master plan layout analyses the circulation routes of citizens, domestic passengers and international passengers. The massed model supporting the secondary terminal on the western edge of the wharf provides first floor access to the existing terminal. The structure will look to support retail and commercial programmes. The cruise liners exceeding the length of the wharf will be supported using a post at the end of the wharf to restrain the vessel when berthed.

Figure 54. Conceptual master plan model 1
6.3.2 Master Plan Iteration 2

Concept 2 explores the use of a gantry-like structure to service a secondary cruise liner on the western edge which connects international passengers to the existing terminal for processing. When this gantry is not functioning for terminal use, it can be used as a skywalk viewing platform. The cantilevering structure is an alternative approach to dealing with the need for a non-invasive wharf extension. This option is more aesthetically pleasing than proposal 1, however the extensive open space weakens the urban plan.

Figure 55. Conceptual master plan model 2
6.3.3 Master Plan Iteration 3

The 3rd conceptual master plan explores a combination of the successes identified in the first 2 concepts. The cantilevered gantry is retained with massed forms below to define the urban plan. The programmes of these building will be retail and restaurant to enhance a sense of place at the end of the wharf.

6.3.4 Master Planning Conclusion

Users circulate freely through the site and are filtered at the entry points of the domestic ferry port where they go through a ticketing system to use this building, and at the processing point of the terminal where a passport and ticket are required to continue to the vessel. Circulation routes are conceptualised through the use of multiple levels. The programs which are implemented in the concepts aim to encourage users to navigate to the end of the wharf and provide a sense of place which currently is not resolved. This is most successful in the 3rd iteration of the master planning concepts. This concept will be used in the developed design of the site, and specifically, the public building adjacent to the heritage ferry building. This building is an important transition building which assists pedestrian circulation to and from the site.

Currently continuous circulation is lacking around the ferry building and the domestic ferry building. This area requires further development. See appendix D for further conceptual designs.
As the first iteration of the domestic port appears to visually reject the western facade, the terminal form has been extended to hug the edge of the wharf. This allows the design to integrate with the entirety of the site more successfully and allow better circulation around the edge of the wharf.

Boundaries
Mary Miss is an artist who explores the ideas of boundaries in landscape through sculptural, architectural and landscape interventions. For example, Greenwood Pond is a series of installations in Museum Park developed by layering associations and memories in a visual manner. A promenade extends down into a pond, whose path is traced by wood pilings. At the opposite end, a concrete trough allows occupants to sit at eye level with the surface of the water, unable to physically move beyond this point. She describes this experience: "One feels the protection of the concrete walls holding back the pressure of the surrounding water."53 The idea of boundaries has been visually conceptualised in an interactive manner for users. This idea is similar to the boundaries identified at Queens Wharf, such as the red fence, as well as security boundaries of facilities, and useful to inspire abstract ways to influence design.

6.4 Developed Design
Site
The footprint of Queens Wharf remains intact and is extended to develop pedestrian circulation on the waterfront side of the Ferry Building. The stairs into the harbour establishes a lost connection to the water and encourages users to dwell. By extending the space in front of the Ferry Building, it establishes a sense of place and significance to this building. It is likened to a piazza which is often centrally located in a place of social significance for users to dwell.52

Circulation
As the first iteration of the domestic port appears to visually reject the western facade, the terminal form has been extended to hug the edge of the wharf. This allows the design to integrate with the entirety of the site more successfully and allow better circulation around the edge of the wharf.

The programmatic study of buildings along the fringe of the waterfront reveals how structure dissipates at the junction of Queens Wharf, where public space concludes and industrial occupation begins. This significant boundary is expressed with the development of a new building at the eastern foot of the wharf adjacent to the Ferry Building. The façade of this new public building is analysed with the Ferry Building and adopts a contemporary juxtaposition which acknowledges its form structurally and aesthetically. Its visual response to the dissipation of form along the waterfront has been acknowledged in its design.

This structure is a public building which aims to provide exhibition and seminar space for urban and architectural developments proposed for Auckland. This is connective space from the city basin to the wharves so pedestrians and passengers moving through this building have the opportunity to be educated in the progression of this recreational city. Upper floor levels of this building will provide office space for the Auckland Harbour Board overlooking Queens Wharf.
6.5 Critical Appraisal of Design Outcome

Architectural intervention cannot by itself resolve the disconnection outlined in this project caused by Quay Street. The involvement of a traffic engineer to redirect vehicle routes would need to be implemented to improve the waterfront environment across the entirety of the city basin. However, the design proposed has mitigated the issue of Quay Street by prioritising pedestrian and public transport through this space and conceptualising a skywalk for pedestrians from the city to Queens Wharf.

The Wynyard Quarter development has been successful, by enhancing the pedestrian experience and improving connections. The intention of this project acknowledged this precinct and attempted to extend this link by proposing a tram station to connect this space to the site, and continuing this connection to Mission Bay. Improvements to enhance this axis can be translated across the rest of the waterfront fringe for a better pedestrian connection.

The design incorporates a harmony between existing heritage buildings with new forms driven by a historical narrative. The intention to create a memorable experience for tourists arriving at this gateway to Auckland City was enhanced by educating them about the industrial and recreational developments of the city. The red fence was a conceptual barrier which has been redefined into a threshold.
Figure 67. Conceptual axonometric view of site in context
8.0 LIST OF FIGURES

Images produced by author unless otherwise stated

Figure 1. Queens Wharf

Figure 2. Quay Street Intersection

Figure 3. Site Plan of Queens Wharf

Figure 4. Site Plan of Auckland in 1885, reproduced from http://heritageetal.blogspot.co.nz/2013_03_01_archive.html

Figure 5. Site Plan of Princes Wharf, reproduced from http://www.fclarchives.co.nz/item.php?id=38300

Figure 6. The Cloud and Shed 10, Queens Wharf, reproduced from https://woodnpepper.wordpress.com/2012/08/02/the-cloud-shed-10-redevelopment-of-queens-wharf/

Figure 7. Sketch of city down Queen Street Axis

Figure 8. Cheonggyecheon Stream, reproduced from https://sustainabilitywriter.wordpress.com/2012/07/04/the-cheonggyecheon-river-restoration-project-seoul-south-korea/

Figure 9. Physical Model of Cheonggyecheon Stream, reproduced from http://www.fclarchives.co.nz/item.php?id=38300

Figure 10. The High Line, reproduced from https://c2.staticflickr.com/4/3786/14082063968_905c484158_b.jpg

Figure 11. Early design impression published in local newspapers expressing a vision of generous areas of connected public space, reproduced from http://joelcayford.blogspot.co.nz/2013_11_01_archive.html

Figure 12. Artists impression commissioned by the developer for application of consent. Image gives impression of popular public spaces and places between it, reproduced from http://joelcayford.blogspot.co.nz/2013/06/endangered-public-spaces-on-aucklands.html

Figure 13. Site Plan of Queens Wharf

Figure 14. Wynyard Quarter-Aerial Photograph, reproduced from http://www.aucklanddailyphoto.com/page/3/?s=shot

Figure 15. Programmatic Gordon, reproduced from http://www.aucklandcity.co.nz/online/

Figure 16. Roof Top Plaza of Yokohama International Port Terminal, reproduced from http://www.farshidmoussavi.com/node/15#yokohama_international_port_terminal_yokohama_japan_15_217

Figure 17. Aerial Photograph of Yokohama International Cruise Terminal, reproduced from http://www.e-architect.co.uk/architects/foreign-office-architects

Figure 18. Ports of Auckland Protest, reproduced from http://www.odt.co.nz/news/national/334384/angry-port-protesters-take-over-queens-wharf

Figure 19. Contextual Mapping of Site

Figure 20. Site Plan of Queens Wharf

Figure 21. Site Plan of Princes Wharf

Figure 22. Train Rail Tracks

Interviews

Bhaven Raval, interview by Chanel Hendriks, August 15, 2015

Jeremy Salmond, interview by Chanel Hendriks, July 29, 2015

Seminars

Figure 30. Shed 10 Ground Floor Plan and First Floor Plan
Figure 31. East to West Axis
Figure 32. North to South Axis
Figure 33. Site Section
Figure 34. Vehicular circulation VS Pedestrian circulation
Figure 35. Wharf length VS Vessel length
Figure 36. Steel truss system in existing ferry port
Figure 37. Section exploring underground vehicular trafficking of Quay Street
Figure 38. Current transport prioritisation ratio of Quay Street
Figure 39. Gantry over Quay Street
Figure 40. Perspectives sketch of Quay Street
Figure 41. Section of Freiburg Bächle water inlet, reproduced from https://en.wikipedia.org/wiki/Freiburg_B%C3%A4chle
Figure 42. Water Channel in Freiburg Bächle, reproduced from https://cyclewriteblog.files.wordpress.com/2010/06/bikerowchannel.jpg?w=375&h=281
Figure 43. Sketch of Quay Street
Figure 44. Conceptual sketch of skywalk
Figure 45. Conceptual model of proposed ferry in Queens Wharf
Figure 46. Conceptual model of pocket park structure
Figure 47. Zhenghe Shipyard Port, reproduced from http://www.ukmuseum.org.uk/bluehavenshoot/index.php?art-101
Figure 48. Conceptual models of proposed ferry port makeover
Figure 49. Conceptual models of proposed terminal extension
Figure 50. Proposed tram station
Figure 51. Foundation Carter Building by Jean Nouvel, reproduced from http://www.archdaily.com/84666/ad-classics-fondation-cartier-jean-nouvel
Figure 52. Conceptual modelling of proposed public building
Figure 53. Conceptual master plan model 1
Figure 54. Conceptual master plan model 2
Figure 55. Conceptual master plan model 3
Figure 56. Model of proposed space in front of ferry building
Figure 57. Boundaries in Landscape by Mary Mis, reproduced from http://www.marymis.com/index.htm#identifying-boundaries-on-queens-wharf
Figure 58. Reviving the form of the proposed ferry port
Figure 59. Revised ferry por porter model
Figure 60. Master plan Queen Street
Figure 61. Master plan South Quay
Figure 62. Sketches of programmatic layout of Public Building
Figure 63. Facade analysis of ferry building and proposed building
Figure 64. Conceptual model of the new Queen Street axis
Figure 65. Conceptual master plan model of ferry
Figure 66. Concept for Queens Wharf Competition by Williams Architects Limited, reproduced from http://www.wa.co.nz/portfolio/queens-wharf
Figure 67. Concept for Queens Wharf Competition by David Gibbs and Associates Ltd and the Architects Limited, reproduced from http://dbu.co.nz/projects/queens-wharf-competition-finalist
Figure 68. Concept for Queens Wharf Competition by John Coop of Trincity Studio/Weather and Water Architects, reproduced from http://www.weatherandwaterarchitects.com/queenswharf建筑设计竞赛/
Figure 69. Concept for Queens Wharf Competition by Audrius Gedaudas, Shanghai China
Figure 70. Concept for Queens Wharf Competition by Ben Adams, Peter Griffin and Hannah Turner of Field Landscape Architects.
9.0 APPENDICES

Appendix A - Queens Wharf Design Competition

‘Opening the Red Gates’ was a design competition initiated in 2009 by the New Zealand Government, Auckland Regional Council and Auckland City Council. The design intended to realise a “people’s wharf” in anticipation of the upcoming 2011 Rugby World Cup. The entry: The top 5 finalist designs were publicly released after they were given key issues to develop in stage 2 of the competition as well as a restrictive budget of $43 million for the developed design proposals.

The finalists however were heavily critisized by the public and by Regional Auckland Council’s chairman, Mike Lee, describing the designs as “lacklustre, underwhelming and mediocre.”54 Due to the overwhelming negative feedback received on the proposals, the competition was eventually canned and a winner was never announced.55

The finalist’s designs are represented:

Figure 68. Concept for Queens Wharf Competition by Williams Architects Limited

Figure 69. Concept for Queens Wharf Competition by David Gibbs and Aaron Sills of Construkt/SVB Architects Limited

Figure 70. Concept for Queens Wharf Competition by John Coop of Tasman Studio/Warren and Mahoney Architects
Figure 71. Concept for Queens Wharf Competition by Audrius Gedgaudas, Shanghai China

Figure 72. Concept for Queens Wharf Competition by Den Aitken, Peter Griffins & Hamish Foote of Field Landscape Architects

Figure 73. Concept for Queens Wharf Competition by Den Aitken, Peter Griffins & Hamish Foote of Field Landscape Architects

Appendix B - Cruise Statistics
Appendix C - Auckland Plan: Most Liveable City

Auckland City Council has acknowledged the performance of Auckland City is compromised by a number of constraints. Improvement on our public spaces include development of the following elements:

1. The demand for more green and accessible urban and play spaces for families with children and older people are to be attracted to city living. The retail sector is also underperforming in relative terms. Most workers and students leave the city centre after office hours, reducing the night-time economic activity.

2. Incomplete pedestrian and cycle links to open spaces. The pedestrian environment is of poor quality and does not encourage people to walk across the city centre.

3. A disconnected waterfront due to the physical barriers caused by Quay Street.

4. Visitor destinations are scattered across the city centre and poor-quality streets and buildings discourage people from walking between them. As a destination, the city centre lacks depth and coherence, and as a result fails to hold visitors for extended periods of time.

5. There has been a loss of heritage from a legacy of ill-conceived development, poor management and maintenance, and inadequate investment. These constraints are restricting the economic potential of the city with the expectant citizen and tourism growth of Auckland. The Auckland City Council has identified that Auckland is ready for development, and released the Auckland City Master Plan 2012, outlining the proposed ideas they have for Auckland for the next 30 years. The vision is to become the world’s most liveable city. This would mean a safe and healthy city, well connected and accessible, culturally rich and creative and identify with the Maori identity which is Auckland’s point of difference in the world.56

In particular, a vision shared with Waterfront Auckland for Queens Wharf is outlined in their Auckland Waterfront Vision 2040 document released publicly:

“Queens Wharf will continue to be used for port operations over the short to medium term, in particular for non-container based cargo. However, alternative uses will be explored over the medium to long term when the wharf is no longer required for core port functions. Ideas include providing public axis, public spaces, a continual link between Queens Wharf and the waterfront, reconfiguring the wharf structure to create a new town basin, an iconic building, extending ferries and water taxis, entertainment and a mix of activities.”57

Appendix E - Final Design

Queen Street Perspective